Бесплатное скачивание работ
АВТОРИЗАЦИЯ
Подробнее о работе: Неравенства Коши (курсовая работа)
Оглавление:
1. Введение
2. Множества в Евклидовом пространстве
Основные метрические понятия
а) Угол между векторами
б) Неравенство треугольника
3. Комплексные пространства со скалярным произведением
Скалярное произведение (Основные метрические понятия)
Введение
Коши Огюстен Луи (1789—1857) — знаменитый французский математик. Доказал ряд замечательных теорем в области анализа, теории функций комплексного переменного, теории дифференциальных уравнений и т. д. Большая заслуга Коши — разработка курса анализа, в котором, в частности, он предложил ставшие классическими определения предела, непрерывности функции и т. п.
Решительный шаг к созданию прочного фундамента анализа был сделан в 20-е годы прошлого века французским математиком О. Коши (1789—1857), предложившим точные определения пределов функции и последовательности и на их основе доказавшим многие фундаментальные теоремы анализа. Несколько раньше (1821 г.) определения предела и непрерывности, целый ряд других замечательных результатов (в том числе знаменитый пример функции, непрерывной на промежутке, но не имеющей производной ни в одной его точке) получил чешский математик Б. Больцано (1781 —1848), но его работы стали известны много позднее.
Определение предела функции по Коши формулируется так: «Число А называется пределом функции f (х) при х, стремящемся к а (т.е. ), если для любого числа можно подобрать такое число >0, что для всех х, удовлетворяющих неравенству 0< | x—а |< ».
Опираясь на это определение, уже нетрудно дать определение непрерывности в точке: функция f непрерывна в точке x0 если limf(x)=f(x0)
Формулировка определения предела последовательности такова: «Число А является пределом последовательности если для любого существует номер N, такой, что при всех n>N верно неравенство | ».
О. Л. Коши внес также большой вклад в развитие математического анализа. О. Л. Коши хорошо известен каждому человеку, изучавшему математический анализ своими результатами в области математического анализа.
б) Неравенство треугольника
ДЕТАЛИ ФАЙЛА:
Имя прикрепленного файла: pat.ZIP
Размер файла: 176.17 Кбайт
Скачиваний: 1746 Скачиваний
Добавлено: : 04/15/2012 22:13